复杂形态钢结构设计培训班

首页 建筑结构-公众号 建筑结构丨细柱的建筑表达和结构实现

建筑结构丨细柱的建筑表达和结构实现

因微信公众号调整了推送规则,如果您想继续接收本公众号的内容,请将“转自:建筑结构-公众号”公众号设为星标,并多点文尾的“”和“”。

星标设置:进入公众号主页,点击右上角「. . .」,点击「设为星标」,公众号名旁就会出现黄色五角星(Android 和 iOS 用户操作相同)。

来源:iStructure(ID:iStructure2017)。

建筑中的柱子兼具有建筑表现和结构受力的作用。细柱作为柱子表现的重要形式之一,追求柱子的精致设计、极致纤细,为建筑师和结构工程师带来了更大的挑战。

勒·柯布西耶在1926年左右提出的 “新建筑五点”,对现代主义建筑产生了深远影响。其中的第一条便是“首层架空、以柱子支承” (Support of ground-level pilotis, elevating the building from the earth and allowing the garden to be extended to space beneath.)。柱子是需要建筑师和结构师精心设计的关键元素之一。
萨伏伊别墅Villa Savoye,1930
维基百科,© Valueyou
勒·柯布西耶设计的萨伏伊别墅(Villa Savoye,1930),首层架空的开敞空间仅保留建筑四周的结构柱。萨伏伊别墅的白色混凝土圆柱间距4.75m,柱高3.13m,截面直径250mm。柱子长度与直径之比达到12.5,相比于古典建筑中柱式的厚重,显得非常简洁、纤细,呈现出一种洗练的建筑表现。
1 柱子的表现形式
随着工程材料和技术的发展,建筑不再依赖粗重而密布的石柱支承荷载。经过建筑师和工程师不断地探索、尝试和和创新,柱子的设计形态出现了三种分化。
一、追求柱子断面纤细轻巧的效果,即细柱(细长柱)。细柱结构的关键问题是受压稳定问题,其材料强度不能充分发挥。欧拉稳定临界应力是细柱难以突破的极限。
现代主义建筑大师密斯·凡·德·罗在实现其空间理念”Less is more” 的作品中,经常采用的“密斯柱”即是典型的细柱。以巴塞罗那国际博览会德国馆(Barcelona Pavilion,1929)为例,柱子高3.1m,截面为不常见的十字形。

从结构受力方面分析,十字形截面的“回转半径”相对于其它截面的更小,柱子长细比更大,是力学意义上的细柱。[注:巴塞罗那国际博览会德国馆十字柱的边长(305mm)比萨伏伊别墅圆柱的直径(250mm)大,但该十字截面的“回转半径”更小,其稳定计算长细比更大。]

巴塞罗那国际博览会德国馆(Barcelona Pavilion)的十字形钢柱,1929
©维基百科Hans Peter Schaefer

约翰逊蜡制公司(Johnson Wax Headquarters)的蘑菇细柱,弗兰克·劳埃德·赖特,1939
© Library of Congress by Carol M. Highsmith
二、追求柱子数量少,将柱子“凝聚”成少而粗的巨柱。巨柱形象厚重,富于气势,其结构一般不存在稳定问题,材料强度得到较充分的发挥。因此,柱身设计更加自由,其截面不局限于方形和圆形,可以塑造出各种特色截面。
以皮埃尔·奈尔维设计的都灵工人文化宫为例,巨大的柱子和放射状钢梁组成一个个撑开的伞。每把“雨伞”是一个独立的单元,撑起十分开阔的内部空间(柱间距38m x38m),巨柱下段断面为十字形,上段渐变收小为圆形,呈现出一种粗犷、挺拔的形象。

都灵工人文化宫Palazzo Del Lavoro,1959,奈尔维
来源:”www.stilemarete.it”© stilemarete.it
三、将柱子几何“离散”成若干个分枝,拓扑演化形成分叉或编织,统称为“树形柱”或“分叉柱”。树形柱将荷载传递由一点变为多点、支承覆盖范围大,提供了更多的传力路径。树形柱分支能够减小屋盖结构的跨度,有利于形成更大跨度的空间。
以上海浦东机场T2航站楼为例,建筑采用了Y形斜柱支承的张弦梁屋盖结构,创造出轻盈、活泼的超大空间。两级分叉的树形柱有效地减小了屋盖张弦梁的跨度,提升了建筑室内净高。设计师对树形柱构件和节点细节做了精细的处理,建筑-结构一体化设计使得结构成为建筑表达的亮点。

上海浦东机场T2航站楼 树形柱/分叉柱
©周健
2 细柱的实现方法
对于柱子设计形态的第一种分类—细柱,为了追求柱子的精致设计、极致纤细,建筑师和结构工程师共同迎接挑战。下面简要分析了采用细柱手法的若干经典案例,归纳了实现细柱设计的数种方法。
轻型的荷载
细柱在结构压力作用下容易发生失稳破坏。为了防止失稳,首先需减小柱子的轴压力,即减轻单柱所承受的压力荷载。
妹岛和世+西泽立卫于2009 年设计的蛇形画廊(Serpentine Gallery),展区由细细的柱子支撑着蜿蜒连续的铝板,铝板反射树木、地面和天空的映像,与周围环境形成呼应。

画廊中细柱仅承受一层轻质屋面(铝板)的重量,其荷载仅大约相当于普通混凝土楼面恒活荷载的1/20,约等于一般建筑轻质屋面恒活荷载的1/5。且蛇形画廊属于临时建筑,在其使用期间遭遇大风和地震的概率极小,设计时几乎不考虑水平作用力,因此其柱子比普通建筑的柱纤细很多。

2009年秋季蛇形画廊,SANAA,2009
iwan.com © IwanBaan
加密的布置
为了防止细柱失稳,另一种减小柱子轴力的方法是加密柱子布置,进而减轻每根柱所承受的压力荷载。妹岛和世在早期的公园咖啡厅设计中,曾采用1.5米x1.5米的小柱网来实现细柱设计。
在大型建筑中,加密柱子可能导致空间局促且凌乱,因此在设计中并不常见。比较成功的案例有赫尔佐格和德梅隆设计的波尔多大西洋体育场(Stade Matmut-Atlantique)。
波尔多大西洋体育场由纤细而密布的柱子支撑起屋顶。纯白色的密柱如同明亮的光线或水滴渲泄而下,将体育场巨大的矩形体块感消解于无形,营造出一个充满活力的空间。柱子细密的线条同时也促成了建筑开放的立面表现。
在结构设计方面,建筑共有644根圆钢管柱。看台下方的柱子承受较大压力,截面较大;而建筑外围柱子密布,且由于屋盖内侧悬挑,导致外围柱子仅承受拉力或很小的压力,柱子可设计得非常纤细。
柱高最大高度约37米,其长径比最大达40,显得格外细长。此外,由于法国当地地震作用小、体育场采用轻质简洁的屋面,每根柱分摊的轴力和弯矩都比较小,使得该建筑方案得以成功实现。

法国新波尔多体育馆,赫尔佐格和德梅隆,2015

iwan.com © IwanBaan
释放弯矩
常规的框架柱截面大小,除了受压杆稳定的影响以外,柱子承受的弯矩也是一个重要影响因素。弯矩一部分由水平力(风和地震作用)引起,另一部分是梁柱刚接节点的平衡弯矩。从这两点出发,减小柱子内的弯矩,是缩小柱子断面的有效手段。

日本东京冼足连结公寓 G-Flat,北山恒、金田胜德,2006
© DAICI ANO
日本东京的冼足连结公寓(G-Flat)实现“细柱”的方法是将集合住宅的“剪力墙”布置在建筑平面的中央,相邻两个单元的剪力墙方向垂直交错布置,以抵抗各方向的水平力。由于剪力墙的刚度远大于钢柱,剪力墙分担了绝大部分的水平力。因此,钢柱几乎只承担轴压力,因此其截面尺寸可大幅缩小。

冼足连结公寓的平面布置图
黑点为细柱,黑色填充为垂直交错布置的剪力墙
©北山恒
日本直岛海之车站也采用了类似的剪力墙与细柱组合的结构形式。海之车站是一个建筑面积约600平方米的轮渡站,屋面为压型钢板(1.6mm厚)轻质屋盖。

‍‍日本直岛海之车站 Marine Station Naoshima, SANAA,

© 2019 Setouchi Triennale Executive Committee

支承屋盖的钢柱直径仅85mm,柱子长度与直径之比达到60。显然如此纤细的钢管无法抵抗海风和地震引起的水平力。用于抵抗水平力的是8片纤薄的钢板剪力墙。钢板墙表面设计成镜面不锈钢,布置在车站开敞的空间中。镜面映射周边景色,与环境融为一体,不容易被察觉到。

钢板墙组成:“2mm镜面无缝钢板+9mm钢板

中间为角钢骨架,防止钢板屈曲

日本直岛海之车站的不锈钢镜面钢板墙

日本金泽海之未来图书馆(Kanazawa Umimirai Library)的细柱则依赖于另一种结构形式。图书馆长宽高为45m×45m×19m,共有3层,被设计者称为“蛋糕盒子”。幕墙是有着6000个小圆孔的GRC板和阳光板,把柔和的自然光引入室内。一种网格状的交叉支撑钢结构藏在幕墙内部,承担了全部水平地震力,其受力特性近似于框架支撑体系中的支撑。
图书馆内部的25根、高达12米的钢柱,仅需承受来自屋顶的重力。为了消除屋面梁传递给柱子的平衡弯矩,柱顶采用了铰接节点释放弯矩作用。

日本金泽海之未来图书馆(Kanazawa Umimirai Library)
CoelacanthK&H(工藤和美+堀场弘),2011
lib.kanazawa.ishikawa.jp©浅川 敏
预应力
解决细柱因压力失稳的方法,除了前文提到的减小荷载和加密布置以外,利用预应力技术减小甚至消除轴压力是一种新颖的方法。石上纯也设计的神奈川工科大学KAIT工坊(Kanagawa Institute of Technology Workshop),令人印象最深的是细密的白色柱子,正是采用了预应力技术。
KAIT工坊最初构想的意象是树林。305根柱像小树一样错综密布在建筑中,编织成一个有密度、非均质的柔和空间。建筑被主要分为14个开放的区块,空间因柱子的分布而生成,相互独立又融为一体。

神奈川工科大学KAIT工坊,石上纯也、小西泰孝,2008
archeyes.com © JunyaIshigami + associates
结构如何实现?一直是人们对KAIT工坊最感兴趣的话题。实际上高度为5m的305根柱子当中,只有42根是承受竖向荷载的受压柱(钢板柱截面为62x90mm),其余的263根钢板柱是施加了预拉力的吊杆(钢板厚度16~45mm,宽度96~160mm),仅用于抵抗水平力。受压柱下端与基础刚接,上端与钢梁铰接,以释放节点的弯矩;吊杆钢板的上下两端均为刚接,以最大程度地提供结构抗侧刚度。

archeyes.com © JunyaIshigami + associates
KAIT工坊的吊杆不存在失稳的问题,严格意义上也不算是柱子构件。吊杆的钢板朝向随机变化,既可以抵抗来自不同方向的水平力(风和地震作用),又使人们身在其中看到不同宽窄的构件变化。由于纤细吊杆的数量远大于受压柱的数量,且吊杆沿钢板厚度方向的尺寸极小,因此置身于建筑中给人以柱子纤细至极的视觉效果。
以上介绍了实现细柱的四种方法,在项目实践中可以综合运用上述方法。例如KAIT工坊项目中以施加预应力的方法为主,同时也结合了密布柱列和释放弯矩的方法。
3 结语
追求柱子精致设计、极致纤细的建筑方案中,细柱既是建筑师表现极简、轻巧的元素,也是结构师追求力学极限的探索,需要建筑师和结构师朝向共同的目标,紧密的合作。文中诸多经典案例也从侧面说明,建筑和结构设计相融合的重要性。
参考文献:
[1] Benton, Tim. The Villas of Le Corbusier[M]. New Havenand London: Yale University Press, 1987.ISBN 0-300-03780-5.
[2] 周健, 汪大绥. 结构工程师视角的“结构建筑学”[J]. 建筑学报, 2017(04): 28-31.
[3] 郭屹民, 结构制造–日本当代建筑形态研究,[M].上海:同济大学出版社, 2016

2)转载须知:原创内容转载及开白要求请后台回复“转载”查看。

课程

↓↓↓点击“转自:建筑结构-公众号“结构·”,

你我吗?

本文来自网络,不代表钢构人的立场,转载请注明出处。搜索工程类文章,就用钢构人网站。 https://www.ganggouren.com/2021/04/198bdb1a1d/

钢结构地图

上一篇
下一篇

作者: ganggouren

为您推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注

联系我们

联系我们

17717621528

在线咨询: QQ交谈

邮箱: 1356745727@qq.com

工作时间:周一至周五,9:00-17:30,节假日休息
关注微信
微信扫一扫关注我们

微信扫一扫关注我们

关注微博
返回顶部