“转自:“
数学是什么?
可能每个理工科出身的人都有自己的看法,但更多的读者(尤其是文科生),会说:『数学是我的噩梦!』
英国学生 Rory Kirkman 在数学考试两次失败后,把可恨的二次方程求根公式纹在了身上。
当我们厌恶数学时,我们厌恶的是数学吗?莫如说我们讨厌的是数学的教学方式和考试方式。今天,请你暂且放下心中对教育制度的愤恨,让我们来一次伟大的数学公式巡礼。
如果你在上学的时候老师告诉了你数学公式背后有这么多有趣的故事,你会爱上数学吗?
▼
伟大的数学公式巡礼
稍有数学阅历的人都有这样的直觉,凡是『简洁』的公式都会给人以美感。而 1+1=2,这是所有公式中最简单明了的一个了,我们只有把它的发明归功于上帝。
即勾股定理。『勾三股四弦五』,这一定理是如此地深入每一个地球人的心灵。它是人类早期发现并证明的重要数学定理之一(公元前约三千年的古巴比伦书版中就有记载),也是用代数思想解决几何问题的最重要的工具之一。
勾股定理(毕达哥拉斯定理)约有400种证明方法,是数学定理中证明方法最多的定理之一。
目前,人类已经能得到圆周率的10万亿位精度。不过现代科技领域使用的圆周率值,有十几位已经足够了。如果用35位精度的圆周率值,来计算一个能把太阳系包起来的圆的周长,误差还不到质子直径的百万分之一。
而现在的人计算圆周率,多数是为了验证计算机的计算能力,还有就是为了兴趣。
1637年的某一天,法国律师兼业余数学家费马,在一本书的空白处写下了下面一段话:
任何立方数都不可能写为两个立方数之和的形式,也没有任何四次方数可以写成另外两个四次方数的形式。普遍地说,任何二次以上的幂都不可能写成另外两个同次幂的形式。
即,当指数n大于2时,上述方程没有整数解。
在写下上面的猜想后,这个天生羞涩、沉默寡言的人却跟世界玩了一个恶作剧,他又写道:
对此我已经找到了一个真正绝妙的证明,但这里空白处太小,写不下。
然而,他怎料到,他随意写下的两句手记,却让350年间的无数数学家耗尽一生,也没能找到那个证明。直到1994年,英国人安德鲁·怀尔斯才证明了费马最后定理。
微积分是微分和积分的总称,『无限细分』就是微分,『无限求和』就是积分。比如,炮弹飞出炮膛的瞬间速度就是微分的概念,炮弹每个瞬间所飞行的路程之和就是积分的概念。
微积分的诞生是数学史上,也是人类历史上最伟大最有影响的创举,因为从此数学家和科学家在讨论连续变化的数量时便有了科学依据。化学、生物学、地理学、现代信息技术等学科运用微积分的方法推导演绎出各种新的公式、定理,促成了后来一切科学和技术领域的革命。
离开微积分,人类将停止前进的步伐。恩格斯曾说:『在一切理论成就中,未必再有什么像17世纪下半叶微积分的发现那样被看作人类精神的最高胜利了。』
经典物理学中最伟大的没有之一的核心定律。学过高中物理的你,还记得它们吗?听听下面这首歌重温一下吧。
牛顿定律都说了啥?| 03’39”
麦克斯韦方程最伟大的功绩就是将电现象、磁现象与光的本质有机地统一在完整的电磁场理论中。这组公式融合了电的高斯定律、磁的高斯定律、法拉第定律以及安培定律。比较谦虚的评价是:『一般地,宇宙间任何的电磁现象,皆可由此方程组解释。』
麦克斯韦揭示了电场和磁场是一种基本媒介,并发现光速c是一个不变的基本物理常数:磁场是由电流产生的,电场是由变化的磁场引发的。而且说到底,光只不过就是传播中的电磁波,是振动中的磁场与电场相互交织、精致编就的织锦,而磁场与电场就好像一幅纺织品上的经线与纬线。
又一个简洁公式的典范!同时也又一次刷新了人类的世界观。质能方程深刻地揭示了质量与能量之间的关系,在此之前,人们毫无疑问的认为:质量是质量,能量是能量,两者间没有联系,但在相对论力学中,能量和质量是可互换的。
读故事前先来看段小视频,了解一下质能公式是讲啥的 | 中德双语 01’58”
▼
本文系网易新闻·网易号“各有态度”特色内容
部分资料来源于网络及《无言的宇宙》
部分资料来源于网络
来源:超级数学建模,如有侵权请联系我们。
咨询和建议,请加下方小编个人微信
好看